可导与连续的关系是什么?

连续、可导与积分的关系

1.一致连续性定理

若函数f(x)在闭区间【a,b】 上连续,则f(x)在闭区间 【a,b】 上一致连续。

2. 可积的条件

(1)可积的必要条件

定理 若函数f(x)在 【a,b】 上可积,则f(x)在 【a,b】 上必有界。

(2)可积的充分条件

定理1 若函数f(x)在 【a,b】 上连续,则f(x)在 【a,b】 上可积。

定理2 若函数f(x)在【a,b】上有界,且只有有限个间断点,则f(x)在【a,b】上可积。

定理3 若函数f(x)在 【a,b】 上单调,则f(x)在 【a,b】 上可积。

函数的可导性与连续性的关系:可导一定连续,连续不一定可导。

连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。

先看几个定义:

1、连续点:如果函数在某一邻域内有定义,且x->x0时limf(x)=f(x0),就称x0为f(x)的连续点。

2、一个推论,即y=f(x)在x0处连续等价于y=f(x)在x0处既左连续又右连续,也等价于y=f(x)在x0处的左、右极限都等于f(x0)。

这就包括了函数连续必须同时满足三个条件:

1、函数在x0 处有定义;

2、x->x0时,limf(x)存在;

3、x->x0时,limf(x)=f(x0)。

初等函数在其定义域内是连续的。

1、连续函数:函数f(x)在其定义域内的每一点都连续,则称函数f(x)为连续函数。

2、连续性与可导性关系:连续是可导的必要条件,即函数可导必然连续;不连续必然不可 导;连续不一定可导。典型例子:含尖点的连续函数。

一、连续与可导的关系:

1. 连续的函数不一定可导;

2. 可导的函数是连续的函数;

3.越是高阶可导函数曲线越是光滑;

4.存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

二:有关定义:

1. 可导:是一个数学词汇,定义是设y=f(x)是一个单变量函数, 如果y在x=x_0处存在导数y'=f'(x),则称y在x=x_0处可导。

2. 连续:设函数y=f(x)在点x0的某个邻域内有定义。如果当自变量Δx趋向于0时。相应的函数改变量Δy也趋向于0, 则称函数y=f(x)在点x0处连续。

若只考虑实变函数,那么要是对于一定区间上的任意一点,函数本身有定义,且其左极限与右极限均存在且相等,则称函数在这一区间上是连续的。

连续分为左连续和右连续。在区间每一点都连续的函数,叫做函数在该区间的连续函数。


欢迎分享,转载请注明来源:民族网

原文地址:https://www.minzuwang.com/life/1164254.html

最新推荐

发表评论

评论将在审核通过后展示